0=w^2-90

Simple and best practice solution for 0=w^2-90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=w^2-90 equation:



0=w^2-90
We move all terms to the left:
0-(w^2-90)=0
We add all the numbers together, and all the variables
-(w^2-90)=0
We get rid of parentheses
-w^2+90=0
We add all the numbers together, and all the variables
-1w^2+90=0
a = -1; b = 0; c = +90;
Δ = b2-4ac
Δ = 02-4·(-1)·90
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*-1}=\frac{0-6\sqrt{10}}{-2} =-\frac{6\sqrt{10}}{-2} =-\frac{3\sqrt{10}}{-1} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*-1}=\frac{0+6\sqrt{10}}{-2} =\frac{6\sqrt{10}}{-2} =\frac{3\sqrt{10}}{-1} $

See similar equations:

| 8x-3=43 | | 93=3x^2+21 | | 3-x=2x(5x-1) | | 2x-5(-3x+5)=-8 | | r÷6=9 | | -2(x+5)+5=6(x+2)+1 | | 6(4x-3)-3x=4(2x-5)-5x+11-7x | | 3a+6=39 | | 5x+4(2x-4)=49 | | 2t+9=8-t | | 3-x=2x(5x-1 | | 5y-7=y+13 | | 6y-19=3y+4 | | -0.5(c-9)=2 | | -4x+16-11x=3 | | 7x+54=x-60 | | -13/6x+9=6/13x+48/13 | | 40+7x=12x | | 2x•5x•6x=3600 | | 4z-1=2(z+3) | | A^2/2-3a/4=1/2 | | 6-3m=3 | | √(x+8)+√(x+1)=7 | | -165=-5+8(-4r-4) | | 12x+2=x+24 | | r^2-23r-50=0 | | 8x-5+3=-10+4 | | 15j−6j=18 | | 23=m-12 | | 8-4y=6y | | )21x-5-x+4)/2=46 | | -8b+4=6b-4 |

Equations solver categories